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The period doubling solutions for the attractor introduced by Huberman and Crutchfield
are studied in the relevant range for the forcing frequency by a numerical method based on
the computation of Galerkin Fourier approximations with very high accuracy. For answering
in an affirmative manner the questions of the existence of an exact period doubled solution,
the error estimate and the transition from a stable to an unstable solution, very precise
solutions combined with periodic series representations are required. It is shown that the
algorithm which uses Galerkin Fourier approximations of high order is a very efficient one.
@ 1989 Academic Press, Inc.

1. INTRODUCTION

In the last decennium the study of period doubling as one of the routes to chaotic
behaviour has aroused much attention by applied scientists and engineers [1-5].
The related topic of strange attractors in deterministic systems has grown to be one
of the main topics in the study of non-linear phenomena in dynamical systems.
Period doubling in non-linear oscillators of the Duffing type has been intensely
studied [ 5-8]. Numerical methods on the computation of periodic solutions and on
period doubling bifurcations are described in [9-11].

Huberman and Crutchfield [7] investigate the behaviour of particles in anhar-
monic potentials moving in an external periodic field. The governing equation of
motion for the charge written in dimensionless form reads

d’x  dx

At +x—dxr’=geos O, (L11)

where g is the amplitude of the external periodic field, Q is the frequency, and ¢
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represents the damping coefficient. Equation (1.1) was solved by using a Systron-
Donner analog computer. Choosing ¢ =0.4 and g=0.115 the amplitude-frequency
response curve exhibits the well-known pattern characterized by a bending to the
left [6], since the Duffing oscillator has a non-linear characteristic of the soft spring
type.

If one decreases Q starting with a limit cycle of period 27/ from Q= 1.5, a set
of cascading period doubling bifurcations starts taking place at 2~ 0.56 resulting
finally in a strange attractor in phase space which is attained at the threshold value
2=0.5567. In addition the usual hysteresis loop was found. These results of
Huberman and Crutchfield have been confirmed by Rty er al. [8] if one takes into
account that analog computer results are only accurate to a few percent. By a
numerical simulation based on a Runge-Kutta-Verner integration method of (1.1),
the period doubling bifurcations of the intersection in the phase plane with the
negative x-axis have been represented. The symmetry of the harmonic solution is
broken at 2=0.535. Period doubling bifurcations arise at Q=0.53 and the
transition to chaos occurs at £ ~0.528.

In [12] Van Dooren investigated the transition from regular to chaotic
behaviour in the Duffing oscillator, especially the determination of the harmonic
solution having the fundamental period and its related stability analysis.

The aim of the present work is to study in a complete manner the period
doubling solutions of the Duffing oscillator with a soft characteristic as considered
in [7, 8] in the relevant interval of interest for the forcing frequency ranging from
02 =0.528 to 2 =0.53. Independently of the methods used in [7, 8] the Galerkin
method [13, 14] will be applied here. The Galerkin approximations representing
period doubling will be computed with very high precision. The non-linear deter-
mining equations for the unknown coefficients in the series representations are
solved by applying Newton’s iterative method. However, the Galerkin method has
the advantage to yield a complete criterion. Once an approximate periodic solution
has been computed, the method allows us to answer the fundamental question
whether there exists an exact periodic solution in a small neighbourhood of a
computed Galerkin approximation. In the affirmative case it also yields an error
estimate of this Galerkin approximation. In addition the stability of the solution
may be investigated. This is performed by computing the eigenvalues of a certain
matrix related to the first variational equations of the original system in conjunc-
tion with the computed Galerkin approximations.

Obviously the choice of the use of the considered Galerkin Fourier approxima-
tions as approximate periodic solutions is a natural choice which inherently fulfils
the requirement of periodicity. However, it has been pointed out that if such
Galerkin approximations of low order are used, it is not possible to answer in an
affirmative manner the mathematical questions on the existence problem and the
error estimation. Therefore, for answering the mathematical questions, very
accurate solutions in conjunction with inherent periodic series representations are
needed. It will be shown in this work that precisely these requirements are fulfilled
by the considered Galerkin Fourier approximations of high order.
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It is to be emphasized that the results derived by the Galerkin method confirm
the results found in [8]. However, the results obtained here give additional insight
in the aspects of existence, error estimate, and stability, ie., the mathematical
aspects which are precisely lacking in most methods of solution. In a series of
papers Van Dooren [15-20] has illustrated that the Galerkin method is a very
efficient algorithm in many important fields of applied sciences and engineering.
In a forthcoming paper Janssen and Van Dooren will report their results on a
numerical study of the Duffing attractor by using very accurate Gauss—Legendre
integration methods.

2. PERIOD DOUBLING SOLUTIONS BY THE GALERKIN METHOD

Let us introduce the new independent variable

Q
l=§“[. (2.1)
Equation (1.1) is then rewritten as
X=X(x, %, 1), (2.2)
with
X(x, %, )= —Wx— Ex’—~ Cx+Gcos 2t, (2.3)
2 16 2 4g
W=— E=—— =— = .
o’ o C o° G o (2.4)

A dot now indicates differentiation with respect to 7. Note that the coefficient E of
the non-linearity in the relevant Q region (0.528, 0.53) is considerably large and
that the period of the forced term has been transformed to the value n. The
phenomenon of period doubling oscillations is thus represented by 2n periodic
solutions. Therefore, following Urabe’s approach [14] applied to the Galerkin
method [13], one looks for an approximate periodic solution to (2.2) which is
represented by a trigonometric polynomial of order m of the form

m

Xp(ty=ag+ Y. (a3, sin nt+a,, cos nt), (2.5)

n=1

with unknown coefficients a4, a4y, .., a,,. These unknowns are determined by
applying a balance procedure to the equation

Xplt) = Xpu[x,(2), X,(1), 1], (2.6)
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where X,,[x,(t), X,(t), t] represents the Fourier series of X[x,(t), x,.(¢), t]
truncated at the harmonics of order m:

X[ x,u(0), X,(0), 1]1=Ag + Y (Ay,_, sinnt + A,, cos nt), 2.7)

n=1

A; being the Fourier coefficients.
Let us add a few comments to clarify the Galerkin procedure. The left-hand side
in (2.6) is the trigonometric polynomial of order m:

()= — Y n’(a,,_,sinnt+ a,, cos ni). (2.8)

n=1

For a general function X(x, x, t) the Fourier series of X[x,,(¢), x,.(¢), t] in which
X,.(t) is represented by

m

X ()= n(—a,,sinnt+a,,_, cosnt), (29)

n=1

has an infinite number of terms in its development. It is to be emphasized that in
the Galerkin approach, while considering a trigonometric polynomial of order m
for the approximate periodic solution, the harmonics of order higher than m, which
generally occur, are neglected in the Fourier series development of X[x,,(?),
X,.(2), t]. The Fourier series coefficients are given by

1 2n
A== XDx,(0), %,(0), 1 b,
2nJo

1 2
Ay =;L X[x,,(t), %,.(¢), ¢] sin nt dr, (2.10)
1 2n
Ay =— J X[ x,.(1), x,,(2), t] cos nt dt,
Tvo

with n=1, 2, ..., m. In general, these Fourier coefficients are non-linear functions in
the 2m + 1 unknowns a; represented in the sequel by the set a = (ay, a,, ..., a,,,). The
truncation of the Fourier series of X[x,,(t), X,,(¢), t] at the harmonics of order m
in (2.6), then allows the determination of the 2m + 1 unknowns a; by equating
the coefficients of the set of the 2m+ 1 basic functions 1, sinnt, cosnt with
n=1,2, .. min (2.6). Hence the following determining equations for the unknown
coefficients are obtained:

Fo(a)= Ao(a) =0,
Fz,,,l(a)EAzn_l(a)+n2a2n7| =O, (2.11)
F2n(a) = AZn(a) + n2a2n = 0’
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with n=1, 2, .., m. The trigonometric polynomial (2.5) found by this procedure is
called a Galerkin approximation of order m.

The set of the 2m + 1 non-linear equations (2.11) in the 2m + 1 unknowns a; can
then be solved, e.g., by applying the generalized Newton method whereby one
linearizes (2.11) near an approximate solution a, yielding

Fi(a)+ z E’:(d)(aj—dj)=0, (2.12)

with i=0, 1, .., 2m. This procedure needs the computation of F; and its partial
derivatives 0F,/0a; when the values of an approximate solution a to (2.11) are
given. This is provided for by a numerical approximation method described in [14]
which is based on the approximation formulae for the computation of the Fourier
coefficients A4; in (2.10),

1 2N
AO =ﬁ Z X[xm(tk)s xm(tk)7 tk]a

k=1
1 v )
Ay =Nkz X[xm(t)s Xm(ti)s te] sin nty, (2.13)
=1
IN
A2n =N Z X[xm(tk)’ x‘m(tk)’ tk] Cos ntk’
k=1

withn=1,2,..,m; N>mand t, =[(2k—1)/2N]=n.

Let us explain how the starting values needed in applying Newton’s iterative
method were obtained. In {127 Van Dooren studied the harmonic solution to
Eq. (1.1) having the fundamental period. The accurate determination of such a har-
monic solution depends on the initial approximation which was found to be [12]

Q42 A2
(1) = 2% sin Qr+ (1 — Q2 —34%) 2 cos O, (2.14)
g 4

where A satisfies

[(1—9%—34%)%+c2Q2*) 4% =g~ (2.15)
The starting values, needed here in applying Newton’s iterative method for obtain-
ing the period doubled solutions, were derived from the Galerkin approximation of

order m = 2. Thus, taking into account that ¢ = (£2/2)1 according to the transforma-
tion (2.1), the initial approximation here is of the form

X(t)=ay, +a,sint+ a, cos t + a, sin 2t + a, cos 2t. (2.16)

The five determining equations for the five unknowns were solved by an
approximation technique whereby a,, a,, and a, are small. The result is that d, and
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d4 are given by the expressions of the coefficients of sin Q1 and cos Qr in (2.14). In
addition a,, a,, and 4, are obtained from certain analytical expressions depending
upon a, and a,.

For those values of Q where periodic solutions with the fundamental period and
the doubled period coexist, the solution depends on the initial approximation.
Starting values are taken from (2.14) for computing the harmonic solution and
from (2.16) for obtaining the subharmonic solution with the period doubled.

It has been pointed out that additional periodic solutions in the period doubling
cascade can be derived in an analogous manner as described here. The study of,
e.g., the transition from 27 to 4T proceeds analogously as the transition from 7T to
2T, where T represents the fundamental period.

Performing the computations on a CDC CYBER 170/750 computer, Galerkin
approximations have been calculated for the values ¢ =0.4 and g =0.115 taken in

TABLE 1.
The Galerkin Approximation of Various Order m for 2 =0.529

m 15 20 25

a, -0.0443744484 ~0.0443730341 -0.0443727620
a, 0.0099194773 0.0097723337 0.0097728507
a, 0.0097799938 0.0096278057 0.0096283157
ay 0.5026113565 0.5026172283 0.5026172741
8, -0.0042860123 -0.0042623811 -0.0042624049
g -0,0055030463 -0,0054220799 -0.0054223821
ag 0.0026017614 0.0025582279 0,0025583739
ag 0.0083363630 0.0083400295 0.0083399786
ag -0,0367240566 -0,0367259990 -0.0367257708
2 0.0028143694 0.0027720007 0.0027721471
a4 0.0044335803 0.0043657115 0.0043659414
8, 0.0381813869 0.0381861250 0.0381861558
2y, 0.0067954257 0.0068033621 0.0068033641
a5 -0.0006720500 -0.0006625511 -0.0006625962
a4y 0.0001530147 0.0001496746 0.0001496863
a5 0.,00220%3545 0.,0022064715 0.0022064585
LI -0.0063355454 -0.0063386318 -0.0063385914
ayq 0,0003883602 0.0003823067 0.0003823274
ag 0.0008663158 0,0008531867 0.0008532361
ag 0.0029727313 0,0029751255 0.0029751357
a5 0.0007503386 0.0007525750 0.0007525776
a,, -0,0000069882 -0,0000072211 -0,0000072280
a5y -0,0000139921 -0.0000138646 -0.0000138641
853 0.0003667563 0.0003710591 0.0003710588

24 ~0,0007865657 -0,0007912413 -0.0007912362
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TABLE 1—Continued

n 15 20 25

855 0.0000%366582 0.0000360401 0,0000360427
8,¢ 0.0001216124 0.0001202470 0.0001202674
857 0.0002037595 0.0002052135 0.0002052221
8,8 0.0000586210 0.0000598510 0.0000598520
359 0.0000115178 0,0000112214 0.0000112143
250 =-0.0000034207 -0.0000034198 -0.000003%4190
a4 0.0000501009 0.0000501067
8z, -0.0000842129 -0,0000842149
a3 0.0000024603 0.0000024572
By 0.0000138779 0.0000139221
e 0,0000119317 0.0000119508
a3 0.0000024517 0.0000024517
sq 0.0000026643 0.0000026653
asg -0.0000002598 -0.0000002599
as9 0.0000058140 0.0000058309
80 ~0.0000080592 -0.,0000080704
a9 0.0000001052
8y 0.0000013717
8,3 0.0000004898
544 -0,.0000002316
8y 0.0000004238
8,6 0,0000000171
847 0.0000006018
28 ~0,0000007129
89 0,0000000013
gy 0.0000001138

[7, 8] for various variations of m and of the frequency in the relevant region
ranging from 2 =0.528 to 2 =0.53. TableI gives the coefficients of the Galerkin
approximation with Q =0.529 for three variations of the order m, ie., m=15,
m =20, and m = 25 taking N = 3m. Numerical convergence with respect to the coef-
ficients is noticed when the order m is increased. Table II represents the Galerkin
coefficients with m =25 for various values of Q. These coefficients were obtained
after four iterations with a required precision of 10~ !° between two consecutive
iterations in order to stop Newton’s iterative method.

In conclusion it is mentioned that the computation of period doubling solutions
can be performed by applying the Galerkin method in combination with the
Newton algorithm. Although the coefficient E of the non-linear characteristic is
large (E= —57.175 for Q=0.529) it can be concluded that the method is a very
efficient one if one looks for approximate period doubling solutions having a very
high precision.
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TABLE 1I
The Galerkin Approximation of Order m = 25 for Various 2

Q 0.5285 0.5295 0.5299
a, =0.0445125644 -0.0442353239 ~0.044127136%
a, 0.0119933086 0.0068884194 0.0030327080
a, 0.0117204951 0.0068420917 0.0030321083
2z 0.5027265426 0.5025082481 0.5024212432
a, -0.0046112549 -0.0039144188 -0,0036367189
ag -0.0066476223 -0,0038259113 -0,0016858014
ag 0.0030891236 0.0018326429 0.0008172947
aq 0.0083399292 0.0083418963 0.0083448102
ae -0.0368581017 -0.0365954772 ~0,0364927569
2y 0.0034125810 0.0019478362 0.0008553903
8 0.0053%17304 0.0030926004 0.0013669958
84 0.0382086512 0.0381638871 0.0381462588
a, 0.0067111494 0.0068949383 0.0069677251
8, -0,0008123730 -0,0004674675 -0,0002059587
51; 0.0001730041 0.0001117075 0.0000513835
a5 0.0022006925 0.0022128216 0.0022183531
8 -0,0063598111 -0.,0063176693 -0.,0063011543
aqq 0.0004723020 0.0002676903 0.0001172190
aig 0.0010436067 0.0006034425 0.0002664003
ayg 0.0029744609 0.0029758648 0.0029764925
50 0.0007353432 0.0007696108 0.0007830918
8, -0,0000086176 -0.0000052356 -0,0000023532
8y, ~0,0000188015 ~0.0000087354 -0.0000034775
823 0.0003683044 0.0003739152 0.0003762762
24 ~0.0007927408 ~0.0007897432 -0.0007885584

3. EXISTENCE, ERROR, AND STABILITY ANALYSIS

By a theorem and a numerical approximation method due to Urabe [14] one
can verify the existence of an exact isolated periodic solution £(¢) in a small
neighbourhood with radius d of a numerically computed Galerkin approximation
X(¢) and in the affirmative case we can yield an error estimate e correxponding to
this Galerkin approximation:

. Mr
max |[xX(¢)—x(¢)| e with e= .
0<t<2n _K

The application of this theorem requires the computation of the error estimate r
corresponding to the differential equation (2.2) for the computed Galerkin
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TABLE 11—Continued

Q 0.5285 0.5295 0.5299

g5 0.0000447847 0.0000250861 0,0000109319
asg 0.0001471672 0.0000850186 0.0000375188
a5q 0.0002048141 0.0002056439 0.0002059919
85 0.0000573607 0.0000623%028 0.0000642341
859 0.0000132264 0.0000078684 0.0000034517
250 -0.0000044700 =0.,0000022505 =0.0000009341
gy 0.0000493878 0.0000508381 0.0000514326
a5, -0.0000841806 -0.0000842452 -0.0000842667
333 0.0000030954 0.0000016860 0.0000007261
azy 0.0000170264 0.0000098470 0.0000043473
855 0.0000119067 0.0000119984 0,00001203%91
a3¢ 0.0000021706 0.0000027267 0,0000029422
azq 0.0000032809 0.0000018729 0.0000008226
a5g -0.0000003592 -0.0000001598 -0.0000000620
8sq 0.0000056936 0.0000059694 0.000006081 1
850 -0.0000080459 -0.0000080937 -0,0000081116
841 0.0000001394 0.0000000682 0.0000000280
85 0.0000016746 0.0000009718 0.0000004296
a3 0.0000004890 0.0000004913 0.000000493%1
244 =-0.0000002537 -0.0000002102 ~0.0000001936
85 0.0000005211 0.0000002981 0.0000001310
a6 0.0000000152 0.0000000154 0.0000000080
249 0.,0000005806 0.00000062%2 0,0000006403
28 -0.0000007092 -0.0000007164 =0.0000007191
849 0.0000000028 0.0000000002 -0.,0000000001
a5y 0.0000001385 0.0000000809 0.0000000359

approximation and the computation of a bound M for the norm of a linear map-
ping in the space of the continuous 2z-periodic functions associated with a certain
Green operator. K is a certain contraction mapping factor. It is also required that
all the eigenvalues s; of a certain matrix P(2n) are different from 1. In addition, if
all these eigenvalues s; are in modulus less than 1, then the periodic solution is
stable. For further details about Urabe’s method the reader is referred to [14].
Table III summarizes the results of the existence and error analysis taking d=¢
for the Galerkin approximations with m = 40 for five variations of 2. In all cases
the existence of an exact periodic solution in the neighbourhood with radius 4 of
the relevant Galerkin approximation is guaranteed and the error estimate e is small.
Let us emphasize that it has been pointed out that Galerkin approximations of
low order were not sufficiently accurate to answer in an affirmative way the mathe-
matical questions on existence and error estimation. However, the Galerkin
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TABLE I

The Existence and Error Analysis with d=¢

Q r M K e
0.52850 5.729 x 1077 144,53 0.02825  8.521 x 10”7
0.52875 5.548 x 1077 167.41  0.03683  9.642 x 10~7
0.52900 5.429 x 107% 200,87  0.05243  1.151 x 1075
0.52925 5.180 x 1072 255.07  0.08279  1.441 x 10~°
0.52950 4.884 x 1079 359.90 0.01705 2.119 x 1078

approximations of high order are very efficient for answering those mathematical
questions as illustrated here.

Another very interesting feature that can be studied from the stability analysis is
the transition from a stable to an unstable period doubled solution. In Table IV one
finds the eigenvalues s, and s, of the matrix P(2r) for the period doubled solutions
in the relevant frequency domain ranging from a value of 2 slightly below Q =0.53,
where the creation of a period doubled solution takes place. This creation occurs
at the passage in the limit through the value s=1 and its corresponding 2 value
has been found to be 2=0.529995. When 2 is decreased the solution remains
stable until s, passes through the value s= —1. It has been pointed out that the
transition from stability to instability occurs at Q = 0.528608. At values beyond this
transition value the period doubled solutions are unstable.

In conclusion it has been illustrated that the Galerkin method is a very
appropriate algorithm for computing accurate period doubled solutions of the
Duffing oscillator having a soft characteristic as considered in [7, 8]. In addition
this Galerkin method allows us to derive complete information with regard to the
mathematical aspects of existence analysis, error bound, and stability behaviour.

TABLE 1V
The Stability Analysis

fQ 8y 85 stability
0.52825 -0.0000467903 =-1.575168 unstable
0.52§50 ~0.0000632907 -1,169762 unstable
0.52875 -0.0000956809 -0.777258 stable
0.52900 =0.0001880680 =0.39721¢6 stable
0.52925 -0.0028010458 -0.026790 atable
0.52950 0.0002310536 0.326232 stable
0.52975 0.0001128378 0.671011 stable
0.52990 0.0000870118 0.872514 atable
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