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The period doubling solutions for the attractor introduced by Huberman and Crutchlield 
are studied in the relevant range for the forcing frequency by a numerical method based on 
the computation of Galerkin Fourier approximations with very high accuracy. For answering 
in an affirmative manner the questions of the existence of an exact period doubled solution, 
the error estimate and the transition from a stable to an unstable solution, very precise 
solutions combined with periodic series representations are required. It is shown that the 
algorithm which uses Galerkin Fourier approximations of high order is a very efficient one. 
(2 1989 Academic Press. Inc 

1. INTRODUCTION 

In the last decennium the study of period doubling as one of the routes to chaotic 
behaviour has aroused much attention by applied scientists and engineers [l-5]. 
The related topic of strange attractors in deterministic systems has grown to be one 
of the main topics in the study of non-linear phenomena in dynamical systems. 
Period doubling in non-linear oscillators of the Duffmg type has been intensely 
studied [S-S]. Numerical methods on the computation of periodic solutions and on 
period doubling bifurcations are described in [9-111. 

Huberman and Crutchfield [7] investigate the behaviour of particles in anhar- 
manic potentials moving in an external periodic field. The governing equation of 
motion for the charge written in dimensionless form reads 

d2x dx 
-&Cdsfx-4X’=gcosQr, 

where g is the amplitude of the external periodic field, 52 is the frequency, and c 
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represents the damping coefftcient. Equation (1.1) was solved by using a Systron- 
Donner analog computer. Choosing c = 0.4 and g = 0.115 the amplitude-frequency 
response curve exhibits the well-known pattern characterized by a bending to the 
left [6], since the DulIing oscillator has a non-linear characteristic of the soft spring 
type. 

If one decreases 52 starting with a limit cycle of period 271/Q from 52 = 1.5, a set 
of cascading period doubling bifurcations starts taking place at Q z 0.56 resulting 
finally in a strange attractor in phase space which is attained at the threshold value 
52 = 0.5567. In addition the usual hysteresis loop was found. These results of 
Huberman and Crutchlield have been confirmed by R&y et al. [8] if one takes into 
account that analog computer results are only accurate to a few percent. By a 
numerical simulation based on a Runge-Kutta-Verner integration method of (l.l), 
the period doubling bifurcations of the intersection in the phase plane with the 
negative x-axis have been represented. The symmetry of the harmonic solution is 
broken at Sz z 0.535. Period doubling bifurcations arise at Q ~0.53 and the 
transition to chaos occurs at Q z 0.528. 

In [12] Van Dooren investigated the transition from regular to chaotic 
behaviour in the Duffing oscillator, especially the determination of the harmonic 
solution having the fundamental period and its related stability analysis. 

The aim of the present work is to study in a complete manner the period 
doubling solutions of the Dufling oscillator with a soft characteristic as considered 
in [7, 81 in the relevant interval of interest for the forcing frequency ranging from 
52 = 0.528 to 52 = 0.53. Independently of the methods used in [7, 81 the Galerkin 
method [ 13, 141 will be applied here. The Galerkin approximations representing 
period doubling will be computed with very high precision. The non-linear deter- 
mining equations for the unknown coefficients in the series representations are 
solved by applying Newton’s iterative method. However, the Galerkin method has 
the advantage to yield a complete criterion. Once an approximate periodic solution 
has been computed, the method allows us to answer the fundamental question 
whether there exists an exact periodic solution in a small neighbourhood of a 
computed Galerkin approximation. In the affirmative case it also yields an error 
estimate of this Galerkin approximation. In addition the stability of the solution 
may be investigated. This is performed by computing the eigenvalues of a certain 
matrix related to the first variational equations of the original system in conjunc- 
tion with the computed Galerkin approximations. 

Obviously the choice of the use of the considered Galerkin Fourier approxima- 
tions as approximate periodic solutions is a natural choice which inherently fullils 
the requirement of periodicity. However, it has been pointed out that if such 
Galerkin approximations of low order are used, it is not possible to answer in an 
affirmative manner the mathematical questions on the existence problem and the 
error estimation. Therefore, for answering the mathematical questions, very 
accurate solutions in conjunction with inherent periodic series representations are 
needed. It will be shown in this work that precisely these requirements are fulfilled 
by the considered Galerkin Fourier approximations of high order. 
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It is to be emphasized that the results derived by the Galerkin method confirm 
the results found in [S]. However, the results obtained here give additional insight 
in the aspects of existence, error estimate, and stability, i.e., the mathematical 
aspects which are precisely lacking in most methods of solution. In a series of 
papers Van Dooren [ 15-201 has illustrated that the Galerkin method is a very 
efficient algorithm in many important fields of applied sciences and engineering. 
In a forthcoming paper Janssen and Van Dooren will report their results on a 
numerical study of the Duffing attractor by using very accurate Gauss-Legendre 
integration methods. 

2. PERIOD DOUBLING SOLUTIONS BY THE GALERKIN METHOD 

Let us introduce the new independent variable 

Q 
t=T7. 

Equation (1.1) is then rewritten as 

2 = X(x, 1, t), 

(2.1) 

(2.2) 

with 

X(x, -11, t) = - W2x - Ex3 - Ci + G cos 2t, (2.3) 

E= -;, C=& G=!E Q2’ (2.4) 

A dot now indicates differentiation with respect to t. Note that the coefficient E of 
the non-linearity in the relevant 52 region (0.528,0.53) is considerably large and 
that the period of the forced term has been transformed to the value X. The 
phenomenon of period doubling oscillations is thus represented by 271 periodic 
solutions. Therefore, following Urabe’s approach [14] applied to the Galerkin 
method [13], one looks for an approximate periodic solution to (2.2) which is 
represented by a trigonometric polynomial of order m of the form 

m 

x,(t) = a, + 1 (a,,_, sin nt + u2n cos nt), (2.5) 
n=l 

with unknown coefficients a,, a,, . . . . u2,,,. These unknowns are determined by 
applying a balance procedure to the equation 

%dt) = xmCx,(t), -L(t), tl, (2.6) 
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where X,[x,(t), a,(t), t] represents the Fourier series of X[x,(t), i-,(t), t] 
truncated at the harmonics of order m: 

~mCxm(t)? kn(t), tl = Al + 2 u*n- I sin nt + A,, cos nt), (2.7) 
n=l 

Aj being the Fourier coefficients. 
Let us add a few comments to clarify the Galerkin procedure. The left-hand side 

in (2.6) is the trigonometric polynomial of order m: 

Z,(t) = - f n’(~~~-, sin nt + u2n cos nt). (2.8) 
n=l 

For a general function X(x, i’, t) the Fourier series of X[x,(t), i,,Jl), t] in which 
a,(t) is represented by 

i-,(t) = f n( - u2n sin nt + uzn _ 1 cos nt), (2.9) 
n=l 

has an infinite number of terms in its development. It is to be emphasized that in 
the Galerkin approach, while considering a trigonometric polynomial of order m 
for the approximate periodic solution, the harmonics of order higher than m, which 
generally occur, are neglected in the Fourier series development of X[x,(t), 
i,,,(t), t]. The Fourier series coefficients are given by 

1 2x 
A,=%[ JXx,(t), &,A~), tl & 

0 

1 2n 
A 2np1 =- 

s 
X[x,( t), .t,,,( t), t] sin nt dt, 

no 

A,, = i !‘,‘” X[x,(t), i,(t), t] cos nt dt, 

(2.10) 

with n = 1, 2, . . . . m. In general, these Fourier coefficients are non-linear functions in 
the 2m + 1 unknowns uj represented in the sequel by the set a E (a,, a,, . . . . a,,). The 
truncation of the Fourier series of X[x,(t), a,(t), t] at the harmonics of order m 
in (2.6), then allows the determination of the 2m + 1 unknowns u, by equating 
the coefficients of the set of the 2m + 1 basic functions 1, sin nt, cos nt with 
n = 1, 2, . . . . m in (2.6). Hence the following determining equations for the unknown 
coefficients are obtained: 

Fe(u) = A,(u) = 0, 

F2n~I(u)=A2n-l(u)+n2u2,~, =O, (2.11) 

F,,(u) = A,,(u) + n2u2,, = 0, 
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with n = 1, 2, . . . . m. The trigonometric polynomial (2.5) found by this procedure is 
called a Galerkin approximation of order m. 

The set of the 2m + 1 non-linear equations (2.11) in the 2m + 1 unknowns uj can 
then be solved, e.g., by applying the generalized Newton method whereby one 
linearizes (2.11) near an approximate solution ci, yielding 

F,(C) + F 3 (ig(q - 6,) = 0, 
j=O aaj 

(2.12) 

with i= 0, 1, . . . . 2m. This procedure needs the computation of t;; and its partial 
derivatives aF&, when the values of an approximate solution Z to (2.11) are 
given. This is provided for by a numerical approximation method described in [ 143 
which is based on the approximation formulae for the computation of the Fourier 
coefficients Aj in (2.10) 

A, = & z nx,(fkL anI( f/cl, 
k-l 

(2.13) 

with n= 1, 2, . . . . m; N>m and tk = [(2k- 1)/2N]n. 
Let us explain how the starting values needed in applying Newton’s iterative 

method were obtained. In [12] Van Dooren studied the harmonic solution to 
Eq. ( 1.1) having the fundamental period. The accurate determination of such a har- 
monic solution depends on the initial approximation which was found to be [ 121 

&A2 
X(t) = - 

A2 
sinQr+(l-Q*-3A2)-cosQt, 

g g 

where A satisfies 

[(1-Q2-3A2)2+~2Q2]A2=g2. (2.15) 

The starting values, needed here in applying Newton’s iterative method for obtain- 
ing the period doubled solutions, were derived from the Galerkin approximation of 
order m = 2. Thus, taking into account that t = (O/2)2 according to the transforma- 
tion (2.1), the initial approximation here is of the form 

2(t) = 5, + 5, sin t + (f2 cos t + 5, sin 2t + ti4 cos 2t. (2.16) 

The five determining equations for the five unknowns were solved by an 
approximation technique whereby a,, a,, and a2 are small. The result is that ti, and 
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a4 are given by the expressions of the coefhcients of sin sZ7 and cos 07 in (2.14). In 
addition LzO, a,, and a, are obtained from certain analytical expressions depending 
upon 5, and 5,. 

For those values of Sz where periodic solutions with the fundamental period and 
the doubled period coexist, the solution depends on the initial approximation. 
Starting values are taken from (2.14) for computing the harmonic solution and 
from (2.16) for obtaining the subharmonic solution with the period doubled. 

It has been pointed out that additional periodic solutions in the period doubling 
cascade can be derived in an analogous manner as described here. The study of, 
e.g., the transition from 2T to 4T proceeds analogously as the transition from T to 
2T, where T represents the fundamental period. 

Performing the computations on a CDC CYBER 170/750 computer, Galerkin 
approximations have been calculated for the values c = 0.4 and g = 0.115 taken in 

TABLE In 

The Galerkin Approximation of Various Order M for R = 0.529 

m 15 20 7r; 

*0 -0.0443744484 ~0.0443730341 -0.0443727620 

81 0.0099194773 0.0097723337 0.0097728507 

a2 0.0097799938 0.0096278057 0.0096283157 

a3 0.5026113565 0.5026172283 0.5026172741 

a4 -0.0042860123 -0.0042623811 -0.0042624049 

a5 -0.0055030463 -0.0054220799 -0.0054223821 

a6 0.0026017614 0.0025582279 0.0025563739 

9 0.0083363630 0.0083400295 0.0083399786 

% -0.0367240566 -0.0367259990 -0.0367257708 

a9 
0.00281436g4 0.0027720007 0.0027721471 

YO 0.0044335803 0.0043657115 0.0043659414 

%I 0.0381813869 0.0381861250 0.038186155E 

Y2 0.00679542'37 0.0068033621 0.0068033641 

al3 -0.0006720500 -0.0006625511 -0.0006625962 

*I4 0.0001530147 0 .0001496746 0.0001496863 

*15 0.0022033545 0.0022064715 0.0022064585 

*I6 -0.0063355454 -0.0063386318 -0.0063385914 

97 0.0003883602 0.0003823067 0.0003823274 

98 0.0008663158 0.0008531867 0.0008532361 

*I9 0.0029727313 0.0029751255 0.0029751357 

a20 0.0007503386 0.0007525750 0.0007525776 

*21 -0.000006988z -0.0000072211 -0.0000072280 

822 -0.0000139921 -0.0000138646 -0.00001313641 

a23 0.0003667563 0.0003710591 0.0003710588 

'24 -0.0007865657 -0.0007912413 -0.0007912362 
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TABLE I-Continued 

” 15 20 

0.0000366582 0.0000360401 a25 

a26 

827 

a28 

%9 

90 

a3l 

'32 

a33 

a34 

*35 

‘36 
a3l 

a3a 

a39 

a4o 

a41 

'42 

a43 

a44 

a45 

'46 

847 

'48 

a49 

a5o 

- 

0.0001216124 0.0001202470 

0.0002037595 0.0002052135 

0.0000586210 0.0000598510 

0.0000115178 0.0000112214 

-0.0000034207 -0.0000034198 

0.0000501009 

-0.0000842129 

0.0000024603 

0.000013a779 

0.0000119317 

0.0000024517 

0.0000026643 

-0.0000002596 

0.0000058140 

-0.0000080592 

25 

0.0000360427 

0.0001202674 

0.0002052221 

0.0000598520 

0.0000112143 

-0.0000034190 

0.0000501067 

-0.0000842149 

0.0000024572 

0.0000139221 

0.0000119508 

0.0000024517 

0.0000026653 

-0.0000002599 

0.0000058309 

-0.0000080704 

0.0000001052 

0.0000013717 

0.0000004898 

-0.0000002316 

0.0000004238 

0.0000000171 

0.0000006018 

-0.0000007129 

0.0000000013 

0.0000001138 

[7, 81 for various variations of m and of the frequency in the relevant region 
ranging from 52 =0.528 to .Q = 0.53. Table I gives the coeflicients of the Galerkin 
approximation with D = 0.529 for three variations of the order m, i.e., m = 15, 
m = 20, and m = 25 taking N = 3m. Numerical convergence with respect to the coef- 
ficients is noticed when the order m is increased. Table II represents the Galerkin 
coefficients with m = 25 for various values of 52. These coefficients were obtained 
after four iterations with a required precision of 10-I’ between two consecutive 
iterations in order to stop Newton’s iterative method. 

In conclusion it is mentioned that the computation of period doubling solutions 
can be performed by applying the Galerkin method in combination with the 
Newton algorithm. Although the coefficient E of the non-linear characteristic is 
large (E = -57.175 for Q = 0.529) it can be concluded that the method is a very 
efficient one if one looks for approximate period doubling solutions having a very 
high precision. 
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TABLE II 

The Galerkin Approximation of Order m = 25 for Various Q 

R 0.5285 0.5295 0.5299 

*0 

*I 

a2 

*3 

a4 

*5 

a6 

9 

* 
8 

a9 

810 

71 

"12 

813 

a14 

a15 

aI6 

al7 

818 

a19 

50 

*21 

*22 

93 

'24 

-0.0445125644 -0.0442353239 -0.0441271363 

0.0119933086 0.0068884194 0.0030327080 

0.0117204951 0.0068420917 0.0030321083 

0.5027265426 0.5025082481 0.5024212432 

-0.004611254g -0.0039144188 -0.003636718V 

-0.0066476223 -0.0038259113 -0.0016858014 

0.0030891236 0.0018326429 0.0008172947 

0.0083399292 0.0083418963 0.0083448102 

-0.0368581017 -0.0365954772 -0.0364927569 

0.0034125810 0.0019478362 0.0008553903 

0.0053317304 0.0030926004 0.0013669958 

0.0382086512 0.0381638871 0.0381462588 

0.00671114g4 0.0068949383 0.0069677251 

-0.0008123730 -0.0004674675 -0.0002059587 

0.0001730041 0.0001117075 0.0000513835 

0.0022006925 0.0022128216 0.0022183531 

-0.0063598111 -0.0063176693 -0.0063011543 

0.0004723020 0 .ooO2676903 o.oooi~721go 

0.0010436067 0.0006034425 0.0002664003 

0.0029744609 0.0029758648 0.0029764925 

0.0007353432 0.0007696108 0.0007830918 

-0.0000086176 -0.0000052356 -0.0000023532 

-0.0000188015 -0.0000087354 -0.0000034775 

0.0003683044 0.0003739152 0.0003762762 

-0.0007927408 -0.0007897432 -0.0007885584 

3. EXISTENCE, ERROR, AND STABILITY ANALYSIS 

By a theorem and a numerical approximation method due to Urabe [14] one 
can verify the existence of an exact isolated periodic solution a(t) in a small 
neighbourhood with radius d of a numerically computed Galerkin approximation 
F(t) and in the affirmative case we can yield an error estimate e correxponding to 
this Galerkin approximation: 

max II,?(t)-Z(t)11 <e 
A4r 

with e=- 
OCf<Zn 1-K' 

The application of this theorem requires the computation of the error estimate r 
corresponding to the differential equation (2.2) for the computed Galerkin 
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TABLE II-Continued 
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n 0.5285 0.5295 0.5299 

‘25 
a26 

a21 

?e 

59 

83O 

31 

92 

a33 
Y4 

Y5 

96 
a3l 

98 

a39 

a4o 

a41 

*42 

a43 

844 

a45 

'46 

a4l 

a48 

a49 

*5o 

0.0000447847 0.0000250861 0.0000109319 

0.0001471672 o.ooooe5oi86 0.0000375188 

0.0002048141 0.0002056439 0.0002059919 

0.0000573607 0.000062302e 0.0000642341 

0.000013:264 0.0000078684 0.0000034517 

-0.0000044700 -0.0000022505 -0.0000009341 

0.0000493678 0.00005083s1 0.0000514326 

-0.0000641806 -0.ooooe42452 -0.0000842667 

0.0000030954 0.0000016860 0.0000007261 

0.0000170264 0.0000098470 0.0000043473 

0.0000119067 0.0000119984 0.0000120391 

0.0000021706 0.0000027267 0.0000029422 

0.0000032809 o.oooooi 8729 0.0000008226 

-0.0000003592 -0.0000001598 -0.0000000620 

0.0000056936 0.0000059694 0.0000060811 

-0.0000080459 -0.0000080937 -0.0000081116 

0.0000001394 0.0000000682 0.0000000280 

0.0000016746 0.00000097~8 0.0000004296 

0.0000004890 0.0000004913 0.0000004931 

-0.0000002537 -0.0000002102 -0.0000001936 

0.0000005211 0.000000298i 0.0000001310 

0.0000000152 0.0000000154 0 .ooooooooeo 

0.0000005806 0.0000006232 0.0000006403 

-0.0000007092 -0.0000007164 -0.00000071g1 

0.0000000028 0.0000000002 -0.0000000001 

0.00000013e5 0.0000000809 0.000000035g 

approximation and the computation of a bound A4 for the norm of a linear map- 
ping in the space of the continuous 2x-periodic functions associated with a certain 
Green operator. K is a certain contraction mapping factor. It is also required that 
all the eigenvalues si of a certain matrix P(271) are different from 1. In addition, if 
all these eigenvalues si are in modulus less than 1, then the periodic solution is 
stable. For further details about Urabe’s method the reader is referred to [ 143. 

Table III summarizes the results of the existence and error analysis taking d = e 
for the Galerkin approximations with m = 40 for five variations of A In all cases 
the existence of an exact periodic solution in the neighbourhood with radius d of 
the relevant Galerkin approximation is guaranteed and the error estimate e is small. 

Let us emphasize that it has been pointed out that Galerkin approximations of 
low order were not sufficiently accurate to answer iu an affirmative way the mathe- 
matical questions on existence and error estimation. However, the Galerkin 
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TABLE III 

The Existence and Error Analysis with d = e 

0 r I.1 K e 

0.52Q50 5.729 x 10-g 144.53 0.02825 8.521 x 10-7 

0.52875 5.548 x 10-q 167.41 0.03683 9.642 x IO-~ 

0.52900 5.429 x 10-g 200.87 0.05243 1.151 x 10-6 

0.52925 5.180 x 10-g 255.07 0.08279 1.441 x 10-6 

0.52950 4.884 x 10-q 359.90 0.01705 2.119 x 10-6 

approximations of high order are very efficient for answering those mathematical 
questions as illustrated here. 

Another very interesting feature that can be studied from the stability analysis is 
the transition from a stable to an unstable period doubled solution. In Table IV one 
finds the eigenvalues S, and s2 of the matrix P(2n) for the period doubled solutions 
in the relevant frequency domain ranging from a value of 0 slightly below D = 0.53, 
where the creation of a period doubled ‘solution takes place. This creation occurs 
at the passage in the limit through the value s = 1 and its corresponding 52 value 
has been found to be D=O.529995. When .Q is decreased the solution remains 
stable until s2 passes through the value s = - 1. It has been pointed out that the 
transition from stability to instability occurs at Q = 0.528608. At values beyond this 
transition value the period doubled solutions are unstable. 

In conclusion it has been illustrated that the Galerkin method is a very 
appropriate algorithm for computing accurate period doubled solutions of the 
Dulling oscillator having a soft characteristic as considered in [7, 81. In addition 
this Galerkin method allows us to derive complete information with regard to the 
mathematical aspects of existence analysis, error bound, and stability behaviour. 

TABLE IV 

The Stability Analysis 

R 92 atability 

0.52825 

0.52850 

0.52875 

0.52900 

0.52925 

0.52950 

0.52975 

0.52990 

-0.0000467903 -1.575168 unstable 

-0.0000632907 -1.169762 unstable 

-0.0000956809 -0.777258 atable 

-0.0001880680 -0.397216 stable 

-0.0028010458 -0.026790 atable 

0.0002310536 0.326232 stable 

0.0001128378 0.671011 stable 

0.0000870118 0.812514 atable 
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